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Design Formulas for Nonreactive High-Voltage
Pulse Resistors

R. L. DAVIS

Abstract—To terminate pulse equipment supplying peak voltages
up to a million volts for microsecond durations requires nonreactive
loads to maintain the pulse characteristics. The resistive elements
must not only dissipate the pulse energy but must also maintain a
low reactance for the high frequencies in the pulse waveform. The
return circuit, treated as a short-circuited transmission line, forms
the basis for designing nonreactive resistors with both cylindrical
and flat conductors. The distribution of voltage, current, and power
is shown for the ideal design, Formulas are derived for the Chaperon
double winding, the ‘‘hairpin® or loop geometry, and the coaxial
form. Resistance values range from less than an ohm to several
bhundred thousand ochms for pulse voltages up to 1.2 million volts.
Time constants vary from 10~¢ to 10—'* seconds. A frequency ex-
pression is derived to aid in predicting the resistor’s frequency
response., Consiruction and measuring techniques are included.

_ Frequency effects are analyzed to compensate for the skin effect

on the resistance and inductance, and to select low-loss dielectric
materials. : :

Key Words (for Information Retrieval)-—resistor design formulas,
high-voltage pulse, nonreactive, wirewound.

InTrRODUCTION

INCE THE INCEPTION of radar, pulse appli-
S cations of electronie.components such as resistors
and capacitors have continually increased. The
design engineer must make allowances for the unknown
part of the reactance of these components as well as the
known values. This unknown reactance is especially true
with resistors wherein the type of resistor determines its
radio-frequency response. Normally, wire-wound resistors
are considered to present inductive reactance, while carbon
composition and film resistors have acceptable high-
frequency responses. Still, for at least 60 years, the wire-
wound resistor has been used in ac bridges to give con-
trolled frequency responses of low reactance.'

In “An Empirical Design for High-Voltage Pulse
Resistors,”” the author described an experimental ap-
proach for making resistors for high voltages. These
resistors, made with the Chaperon double winding, had low
reactances. Since that time, 8 more extensive investigation
has been made into known forms of resistors having low
reactance and acceptable frequency responses.

This paper presents formulas and test results for
resistors made from both eylindrical and ribbon econ-
ductors. The different geometries include the Chaperon
winding, the loop or “hairpin,” and the coaxial form.
More than 200 units have been made for specialized
Sandia Corporation equipment during the past three
years,
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Princirres oF TraNSMISSION LINEsS
ArpLIED TO PULSE RESISTORS

Historical Development of the Return Circut

The basic principle for understanding the pulse resistor
is the return ecireuit first studied by Iirchhoff in 1864,
The circuit consists of two separated conductors in close
proximity, with currents flowing in opposite directions.
Ampere used the return circuit in his study of forces on
conductors earrying currents and showed the magnetic
field cancellation of the two currents. Maxwell extended
this concept by applying his wave equations to the cireuit
for expressions of the inductance for cylindrical con-
ductors, and suggested that ribbon wire would reduce
the inductance indefinitely.?

Chaperon made the double winding in 1889, by which
time constants of resistor coils of 107° seconds were
produced. Heaviside extended Maxwell’s work and set up
the basis for electromagnetic waves guided by conductors,
About 1895, C. P. Steinmetz of General Electric formu-
lated the differential equation for the return circuit that
relates the distributed parameters of resistanee, induet-
ance, and eapacitance.® Then, in 1908, E. B. Rosa and
F. W. Grover, working at the U. 8. Bureau of Standards,
studied the formulas and extended the noninductive
resistors for use in ac bridges.’ Since then, other authors
have extended the basie coneepts for particular problems.,

The pulse resistor, being a form of the return circuit
with continuous eonductors, will conduct both de and
high-frequency currents. This feature predetermines that
the electromagnetic pulse wave is a transverse one, with
the components of both the electric and magnetic field
being perpendicular to the direction of energy flow. This
is the principle mode of transmission and offers the
advantage of having no cutoff frequencies, which are
present in other modes -of transmission. Theoretically,
the resistors would operate at extremely high frequencies
except for ehanges taking place due to skin effect, reduction
in the inductance, and losses in the dielectric material.
However, by using: high-resistivity conductors or thin
films to reduce skin effect, by adjusting the inductance
formulas for high frequencies, and by selecting an insu-
lation with a stable dielectric constant and very low
leakage, the [requency response of the resistor can be
extended.

3 J. C. Maxwell, A Treatise on Electricily and Magnetism, vols 1.,
2, 3rd ed. New York: Dover, 1954 reproduction of 1891 ed.; see
vol. 2, ch. 13.

4 C. P. Steinmetz, Theory and Calculation of Allernating Current
Phenomena, 3rd ed. Electrical World and Engineer, Inc., 1900.

# H. L. Curtis and F. W. Grover, “Resistance coils for alternating
eurrent work,”” NBES Bul., vol. § pp. 495-517, 1912,
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(b)

Schematic and equivalent transmission line of the return

cireuit. (a) Schematic: of return eirenit; (b) equivalent trans-

mission line.

Use of the return eircuit dees not restrict the resistance
value, provided the correct geometry is selected. Any
conducting material, such as silver or copper, can be
applied, although a high-resistivity conductor is preferred.

The major difference between the ordinary transmission
line and the pulse resistor is the value of the resistance.
The ordinary transmission line requires the resistance to
approach zero and to produce a lossless line. The pulse
resistor, on the other hand, dissipates energy at the most
efficient rate so that all of the energy of a pulse is dissi-
pated by the time it reaches the end of the resistor. To do
this, the distributed resistance, inductance, and capaci-
tanee must be interrelated in a definite way. The next
seetion of this paper presents the relationship.

Mathematical Development Relating R, L, and C of the
Resistor

F. K. Harris® and B. Hague” present the development
of the return circuit for relating resistance, inductance,
and capacitance so that a nonreactive resistor can be
made for low frequencies. The main points are reproduced
hereé to develop a higher-frequency expression and to
apply the relations to different resistor geometries.

‘Figure 1 shows the schematic form of the return eircuit
and its equivalent transmission line with round wire. A
flat ribbon conductor could have been shown as well.

In Fig. 1, 1 is the loap’s length in centimeters; r is the
conductor’s radius in centimeters; d is the separation of
the conductor’s axes in centimeters, and is small compared
to I; x is any distance from the terminals along the con-
ductors in centimeters; and 3z is an elemental length of
this transmission line. Also, we have:

Z = input impedance
= resistance per unit length

P

¢ = capacitance per unit length

A = inductance per unit length

g = conductance per unit length
and

w = 2xf where { is the frequency in cyeles per second.

¢ ¥. K. Harris, Electrical Measurements. New York: Wiley, 1959,
7 B. Hague, Alternating Current Bridge Methods, 5th ed. London:
Pitman, 1946, chs, 2, 3.

s

Therefore,

The total resistance is B = Ip
The total capacitance is ¢ = I¢
The total induetance is I = I\
The total conductance is G = Ig.

Across the element 9z, we have a voltage
de = (p -+ jwh)t oz (1)

and, by separating variables, we obtain
de Ly
3z = (0 + JeN)i. 2)

Then, the elemental current flowing between the two
conductors is

9 = (jc + gle oz - {3
50 that
i) .
Then, upon differentiating (2), we get

de*

Ly B
37 = (o deN) (5
By substituting for i/dz from (4), we obtain
882 . . 2 .
32 = (pt+ N (uc + gle = Ve (6)
where
b= Vi(p+ jwhN(we + g).
The solution for (6) is
e = C, sinh bz + C, cosh bz. (V)]

The boundary conditions for the pulse voltage applied
to the terminals are a maximum at x = 0, and thereafter
decrease to zero at the end of the return eireuit where
z = L. Substitutinge = ¢yat z = 0, and e = 0 at z = |,
we obtain

“ww o

, : C,
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and
C, = —C, tanh bl (9
80 that
sinh b
e = eo(cosh bz — ﬁhﬁ) volts (10)
and
N e,,b_(. __coshbx)
f = —-p T jon oz ————p T o sinh bx tanh b1/ ATperes.
(11

Equations (10) and (11) are general expressions for
any form of the return circuit and give the values of the
voltage and current at any distance x from the terminals.
Since we are striving to make the total impedance equal
to the total resistance, to be developed in (14)-(28), we
can simplify (11). When Z = R, the pulse voltage and
current are in phase so that

= 1% = ;—; (cosh bx — f?é,unﬂlll—?l) amperes. (12)
Also, the power becomes
_ & _ e ( 2
P=R =% cosh® bx
2 cosh bxsinh bz = sinh’ bx)
T taah b1 fanth® py/ oM (19)

Figure 2 shows the variation of voltage, current, and
power for an ideal pulse resistor, using the normalized
value of e with an arbitrary value of 2 for R to separate
the resulting values of current and power. Since b has a
convergence value of less than 1.57 - - - [see (20)] for any
particular resistor, a value of 1 was selected, thereby
limiting the variation of bz between 0 and 1.0. The graphs
show that peak values of the pulse voltage, current, and
power oceur at the high-potential end of the resistor, and
then decrease exponentially to zero.

The graphs point out an important feature of the pulse

‘resistor: if a voltage breakdown oceurs, it will be located

at the beginning of the conductors where the voltage,
current, and power are maximums. This feature has been
demonstrated by actual units described in the Sandia

Memorandum.® Figure 3 shows a typical breakdown

beginning at the high-potential end of the resistor.

Now, proceeding to the expression for the impedance
of the return circuit, we have for the current at z = 0
from (11)

—_— enb i -
(p + jw)) tanh bl

(14)

'ilz-{) = 1:{) =

Therefore, the input impedance becomes, in the absolute
value,

€a
to

z= % = @t&nh Bi. (15)

RETURN CIRCUIT RESISTOR
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Fig. 2. Plots of pulse voltage, current, and power for the ideal
pulse resistor.

Fig. 3. Breakdown at 600 kilovolts. (Progressive breakdown ot
pulse resistor at 600 kilovolts after 100 discharges. Resistahce
value of 275 ohms.) :

We can also derive this same expression from the
general expression for the impedance of a transmission
line®

Z. + Z, tanh bl)

2. = Z“(Zo F Z, tanh bl (16)
where
Z, = input impedance
Zy = characteristic impedance

Z. = load impedance.
Making Z, = 0 for our case, we obtain
Z, = Z,tanh bl. an

Zo is V(p + jNi/(juc + g}, and by multiplying the
numerator and denominator by V/'(p 4 jwh), we get

[t @y _ et ia
Njwe + g¥p + o)) b

since bis v/ (p + fwh)(jwe + ¢) from (6).

Z, (18)

? L. A, Ware and H. R. Reed, Communications Circuits, 2nd ed.
New York: Wiley, 1947, chs. 1, 5, 6, app. IIL




Therefore, substituting this expression for Z, in {17),
we have

7, = ﬂig’i"tanh bl (19)

which is the same expression for Z given in (15).
Upon expanding tanh bl, we have®
3 PE 2 s 17 ..
tanh bl = bl — 3 .+15bl —315bl + .- (20)
which is convergent for bl < =/2.
Substituting in (19), we have

_p-l-jco)\l: VP2 s AT ]
2=y | U VT g b |
@0

Factoring .7 out of the brackets and multiplying by 1/
into the brackets, we obtain

BE 2., 17 a0 ]
3 +15“_315“+'“'
(22)

By substituting B = pl, L = A, € = o, & = gl, and

Z = (p+ij)-z[1 —

b= V{p+ jwN)(juc + ¢) we geb

Z = (B + bl — BR + jwL)(jC + G)
+ HR + jul) (Wl + )
— 5B + WwLGC + &° + ---1  (23)

which is the general expression for the resistor’s impedance
in terms of the total resistance, inductance, capacitance,
leakage, and frequency. In its present form the expression
is quite difficult to manipulate. If we expand the terms
and make some simplifying assumptions, we can obtain
expressions for making the resistor nonreactive.

By removing the brackets in (23), we have

Z = (B + jwl) — 3B+ jwl)’(uC + &)
+ %R + jul)(jwC + G)°

— #5R + jwl)'(eC + G -+ (24

I R > wl, «C, and G = 0 in all terms above the first,
we obtain .
Z = R + juL — 1R? juc 4+ %R(—&’CY)

= FER(—RC) + - (25)
Collecting the réal and imaginary térms, we have -
Z = (R — G%R%W'CY) _
+ L — BRC + WRCY) + -+ (20)

If the terms containing B* and R* are dropped, since they
are small compared to unity up to 10 megacycles, we
obtain

¢ T, 8. Peterson, Elements of Calculus. New York: Harper, 1950,
p. 265, problem 44.

6

2
Z=R+ jw( - 1330). @7
This is the expression that Harris and Hague obtained
for making a resistor nonreactive at low frequencies, a
few kiloeycles.” To make the resistor nonreactive, ie.,
Z = R, the expression within the parentheses must be
zero, Hence,

CrR®
L — p = {28)
and
_ e _ \/@
=g o R = C (29

Upon substituting expressions for L and (' for different
resistors, we can design resistors in terms of the dielectric
material and the conductors’ geometries. It must he
remembered that the formulas for L and € must be based
upon & unit length and not upon the coils’ configuration.
The mode of winding the conductors dees not affect the
distribution of the inductance and capacitance as long as
the separation and size of the conductors are maintained
throughout the lengths. Although the expression becomes
limited as wl and «C approach E, we have a useful
relation. It has been used by several authors.’*”

The relation in (28) may be written

F=(residual L or ¢) = L. — (CR*/3). 30

The sign of the residual L or C determines whether the
resistor is inductive or capacitive. A positive value is
inductive and a negative is capacitive. The CR?/3 term
controls the sign for large values of B and C, while L
determines the sign for small values of E.

Dividing the expression by R, we obtain

residual L or C) L CR
+ ( B R 3 CD

showing the time constant of the resistor to be the dif-
ference of the time constants of the geometrical inductance
and the capacitance. When a resistor’s reactance is
measured at any frequency, it is the value of the residual
reactance that is obtained. It can be a parallel reactance
or its equivalent series value. Normally, it is eonsidered
a series inductance or a parallel capacitance. The phase

angle becomes
tan™" w(% - %B')

Therefore, the equivalent circuit of the resistor at a
particular frequency can be any one of the three indicated
in Fig. 4.

“Fo obtain an expression for higher frequencies, we

expand the series of (24) to six ferms as shown in (107),

Appendix I, and obtain

_ onfL  RC
Z —Rl:l +2w0(3 15)]

+ jolL + 3°LC — 3R’C].  (32)
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Fig. 4. Equivalent circuit 6f pulse resistor. (a) Ideal; (b} inductive;
{c) capacitive.

Setting the reactive term equal to zero and solving for R,

we get
R = ,/% (3 + &’LO).

Also by making the expression (L/3 — R°C/15), in the

(33)

parentheses of the real part, zero in (32), we obtain’

2
R = 4 f% , or residual reactance = L — %3- , (39

similar to (30). Both of these relations for R are equal when

2T v L
WILC =2 or f_r1{2LC

(35)

This expression is an approximate resonant frequency

controlled by the related values of R, L, and C. The
frequency expression is twice that for a normal resonant
tank circuit, where o’LC = 1. It is not expected that
the frequency value for a particular resistor will mark a
dramatic change in the resistor’s frequency response.
However, the larger this frequency is, the wider will be
the frequency response of the resistor.

By substituting formulas for L and C, we can obtain an
upper frequency expression to help predict the frequency
response in terms of the geometry of the conductors and
the dielectric material,

By making B = +/5L/C, the resistive portion will
remain constant. The reactive part will be slightly
negative (i.e., capacitive) at low frequencies, depending

upon the value of W’ LC. Then it will decrease to zero

at f = 1/= V/1/2LC. Above this frequency, the reactive
component tends to become positive, ie., inductive. At
still higher frequencies, the resistance value decreases and
the residual. reactance becomes more and more capacitive
since the losses increase. (See section on Frequency Effect
on the Dielectric Material.) The frequeney response curves
shown in Fig. 9 demonstrate these basie features. Figure 23
is an example of units that are inductive at low frequencies
and then have peaks in both the resistive and reactive
components at higher frequencies.

We can obtain more terms of the expansion given
in (112), Appendix I, and have

_ ol REC w2L20)]
Z_Rl:1+2w0(3 =+

+ jw[L - Rz(g‘ + %szcz) 4+ SLCE + %wQLC)].
(36)

Although one might feel that more terms will further
aid in analyzing the impedance, there are other factors
to consider. Some of these are:

1)} The inductance decreases with increasing frequency,
since the current is redistributed in the conductors
because of the “skin effect.”

2) The capacitance changes with increasing frequency,
since the dielectric constant eof the dielectric de-
creases, and losses increase.

3) The resistance inereases at higher frequencies because
the current becomes confined to the surface of the
conductors.

Therefore, we see that all the terms. are functions of
frequency, which makes the analysis very difficult. But
we can compensate for these frequency effects by using:

1} Formulas derived for high frequencies, to compensate
for the ehange in the distributed inductance.

2) Dielectrics having stable dielectric constants and
low losses for a wide frequency range, to aid in
making a more predictable resistor.

3) Conduectors having high resistivities, to reduce the
skin effect.

Before discussing these items in detail in the section,
“Frequency FEffects,” we should study the different
resistor geometries and obtain a measure of their frequency
responses. This is the topic of the next section of this

paper.

DEesieN ForMULAS FOR PULSE RESISTORS
oF DiFFERENT GEOMETRIES

The Chaperon Winding Using Round Wire

Tigure 5 shows the Chaperon winding where currents
flow in opposite directions in the two coils. After viewing
a small section of the double winding, we can indicate
the geometrical dimensions for controlling the resistor’s
reactance (Fig. 6). The inductance of the winding is'’

L= 4l(ln§ -+ 411)-10”9 henries (37
and the capacitance is®
—-12
O = K10 torads {38)
3.61In -
,
where
I = length of one winding in centimeters
d = distance between centers of the conductors in
centimeters
r = radius of the conduetors in centimeters

k = dielectric constant of both the insulation on the

wires and the dielectric between them, and
In = logarithm to the natural base of 2.718....
©-Formulas and Tables for the Calculation of Mutual and Seif-

Inductance (Revised), No. 169, Scientific Papers of Bureau of
Standards, 3rd Ed., 1948, pp. 150-188,




Ii we substitute these expressions in R = ~/3L/C for
low frequencies, we obtain

_ 208 d)”’ 1.4
R = ‘\/I_{ (111'; + Zln;oh_ms (39)
For the high-frequency expression, B = \/5L/C, we find
_ 2685 d)2 1. d
R = VE (111; -[—zlnrohms. (40)

In Tig. 7, plots of R versus d/r are shown for values of
d/r > 10. If d/r is less than 10, we must change the
spacing formula to accommodate the proximity effect of
the conductors. The expression In(d/r), is derived from
the more complete expression,”"*

V@] w

which is equivalent to
cosh™ Ed; | (42)

Substituting in the high-frequency equation for the
resistance, we have

5 _ 285
- VK

In Fig. 8 a plot for (43) is shown for two different values
of k.

In both (40) and (43) it should be observed that the
value of R is not a funetion of the length of the conductors.
Thus, the relation among R, L, and C for a nonreactive
resistor is maintained per unit length of the Chaperon
or double winding. However, the spacing of the paired
conductors must be preecisely controlled throughout the
windings fo obtain the best frequency response. Both
plots in Fig. 7 and 8 show that a small change in the
ratio d/r produces a large change in the resistance value,

Using the expression, f = 1/m 4/1/2LC, for the
predictable frequency of the Chaperon winding, we sub-
stitute (37) and (38) for L and C. For any value of the
ratio of d/» > 10, we obtain

{ d
6.72.10° -

INE [ g 7 oveles persecond.  (44)
In - + 1

2
(cosh'I 2—?*) + i— cosh"i% ohms. (43)

For proximity effects, cosh™ (d/2r) is substituted for

In (d/r). Since | = 2R/p for the double winding, and p is

the resistivity in ohms per centimeter, we have

d
3.36-0-10° < , i up
= cycles per second.
RVK I d,; 4 i

NA, D, XKraus, “Hyperbolic functions,” Electro-Technology,
vol. 68, pp. 87-92, October 1961.

From this expression, we see that the resistivity of the

wire should be as high as possible, such as that used in

wirewound resistors, having a value of 800 ohms per
circular mil foot (26.5 ohms per centimeter). Also, the
wire size should be as small as possible for the best
frequency response. However, large pulse currents force
a compromise and the optimum size cannot always be
used, The value of K should be the value measured in the
vicinity of the estimated frequency.

Chaperon winding,

///////////////f//l_
Fig. 6. Geometrical dimensions controlling the reactance of the

FLAT
ARD
TERMINAL

RESISTANCE WIRE
Fig. 5. The Chaperon winding

FLOW OF
CURRENT
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Table I lists the constructional and frequency data on

. several Chaperon resistors, using round wire, made on
both flat cards and cylindrical cores. The constructional
data include the wire size, resistance per unit length, and
the turns per inch for each winding, The frequency data
show the actual ratio of d/r for each resistor and the
theoretical values taken from Fig, 7, or caleulated from
{40). The time constants were calculated from measure-
ments at different frequencies. The predicted frequency,

using (45}, is listed for each resistor. All of the resistors
were encapsulated in SRIR epoxy (Semi-Rigid Inspection
Resin developed for pulse transformers), which has a
dielectric constant of 3.22 at 10 megacyeles.

The theoretical value of d/r was not used because the
pulse current required larger wires and because of re-
strictions imposed upon the physical dimensions of the
resigtors. Thus, the resistors are predominantly capacitive
since the dec resistance exceeds the theoretical value

TABLE I
CrarEron PuLsE REesistors Using Rouxnp Wire
d d i
Resistance Peak Wire | Resistance | Predicted | Turns - ‘ - Time constant (seconds) from
Sample - value voltage size of wire frequency | per * r measurements at frequency
No. (ohms) (kilovolts) | (inch) | (chms/cms) {cps) inch | Actual | Calculated (megacycles)
1 15K 100 0.0014 13.2 1.65.10° 52 259 2.9 X 104 —4.2 108 @ lme
—8.7 .10 @ 0.2 me
2 1K 100 0.005 1.075 2,15-108 16.1 25 630 —26 107" @ 1me
—5.05.10~% @ 50 me
—6.2 -10° @ 0.2 me
3 2K 100 0.005 1.075 1.07-10° 33.6 11.8 5.3 X 108 —~88 -107* @ 1 mec
—0.8 -10—* @ 50 me
—42 .10 @ 02me
4 K 100 0.0031 2.8 5.25-108 | 624 10.3 8 ¥ 102 —6.2 (1078 . (@ 1 me
. —4.8 -10% @ 50 me
—215.107% @ 0.2 me
5 50 K 150 0.0014 13.2 4.96-105 64.3 20.7 2.6 X 106 —3.0 1077 @ 1me
—22 1077 @ 50 me
+1.8 -10° @ 0.2 me
6 500 100 0.010 0.263 9.9 108 33 6.06 26 +3.7 (10 @ 1 me
—~2.6 -107* @ 50 mec
—4.8 107 @ 0.2 me
7 50 K 500 0.0014 13.2 4.96-10% 83.6 16 2.6 X 101 —4.3 107 @ 1 me
—53 1077 @ 50 me
+ % 5
E N ~—_\<5000hms
"é T — :\ ';. E—um ohms
- % 5 T e— 10, 000 okms
E 10 Residual reactance vs, lfrequem:y
2,10
2. 00
1.90
1.80
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1,00 —
%0 \
B0 1000 ohms
.10
B %ol
RDC ;g Eé—g versus frequency
.20 pe
.10 10, 000 ghms
05 1 .z 5 1 2 s 10 s 100 200
Freguency (megacycles)
Fig. 9. Frequency responses of 500-, 1000- and 10000-ohm resistors DR

listed in Table I.
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corresponding to the actual ratio of d/r. Although the
ratio for the 500-ohm unit approached the theoretical
value, the resistor remained inductive. It must be remem-
bered that the predictable frequency formula is not valid,
since the resistors were not built in accordance with the
value of d/r. Btill, the formula provides an estimate of
the frequency response.

The time constant of a resistor is not always the best
indicator of its frequency response. Although it may be
a low value, it does not indicate the change in the ac
resistance value with frequency. It does show that the

residual reactance is 1) induective or capacitive by its

sign, 2) changing or not changing with frequency, and
3} sufficiently small so that it will not affect the rise time

of the pulse’s leading edge. To apply the resistor fully,

one must also consider its frequency response.

.The frequency response of the 500-. 1000-, and 10000-
ohm umnit is shown in Fig. 9. The ratio, R.«/Epe, is
plotted at each frequeney in the lower part of the figurve;

* the corresponding inductive or capacitive residual reac-

tance is shown in the upper portion.

The plots show that the 1000-ohm resistor has the
best frequency response for the resistance value and
residual reactance. This result is normaslly found with
1000-ohm values of the Chaperon winding unless an
extremely large resistor is made. The stability of the
resistance value with frequency exceeded the estimated
upper frequency.

The 10000-ohm unit has the characteristic frequency
response of a large resistance value when the two windings
are close together and consist of many turns. The est-
mated frequency coincides with the frequency at which
the resistance value begins to decrease. To improve the
frequency response requires either that the d/r ratio
be extremely large, or that smaller wire be used so that
both the distributed induectance and capacitance are
reduced.

The 500-ohm resistor demonstrates its induetive
properties with the increase in the ac resistance above
its predicted frequency of one megacycle. Then, the
resistance decreases rapidly above 50 megacyecles. How-
ever, the inductive reactance changed to a capacitive
value at 10 megacycles. These properties show that the
real part of the total impedance (ac resistance) and the
imaginary portion (residual reactance) can change inde-

pendently of each other. Resistors, having a very low

residual reactance, show a more consistent relation
between the two components (see Fig. 15). To improve
the frequency response, one must use ribbon conduetors so
that the ecapacitance is increased and the inductance is
decreased. The use of ribbon conductors is deseribed
in the next section.

Figures 10-13 are photographs of different Chaperon
resistors showing various eonstruectional features.

. The data on the resistors having the Chaperon winding
with round wire applies directly to the noninductively
wound resistors commercially available. These units of

relatively small size are wound on eeramic cores and
then eneapsulated in a silicone protective covering.

Since they are small, short lengths of wire must be
used to produce their limited resistance range. Thus, both
the total inductance and capacitance are reduced. The
resistance value essentially controls the residual reactance.
Below 1000 ohms, the resistors tend to be inductive, and
above 1000 ohms they are capacitive, Units of 1000 ohms
are essentially nonreactive.

Figure 14 is a photograph of four different sizes of
1000-ohm resistors. All of them have extremely low
reactances up to 100 megacycles. Figure 15 shows the
frequency response of the largest and smallest units.
The lead lengths of the smallest unit were adjusted to
make its reactance zero as shown in the photograph.

Since the single units have such low reactances, they
can be connected in strings to produce high-voltage pulse
resistors. Such a unit is shown in Figure 16. This resistor
consists of five small resistors, 5-watt size, each having
10000 ohms resistance. The encapsulated unit with its
corona shields readily operated at the 50-kilovolt rating.
Another unit, not shown consisted of six resistors of the
10-watt size, totaling 110 kilohms. It withstood a 500-
kilovolt, 10-microsecond pulse repeatedly.

The Chaperon Winding Using Wire Ribbon

If ribbon or tape conductors are used in place of round
wire, the capacitance is increased and the inductance
is decreased for the same resistance value. Thus, tapes
are used mostly for the low resistance values. However,
they ean be used for higher resistance values if the tapes
are separated sufficiently.

To use tape conductors, one must consider how the
tapes are wound in regard to their separation. Figure 17
shows three situations that must be considered.

For the arrangement in Fig. 17(a) the inductance is™

I = 41 m%- 107° henries (46)
1

where I = length of one tape in cenfimeters
InR, = Inb — (3/2),

where b is the width of the tapes in eentimeters
Ink =£li1nd+£(l—-:)1n(b2+d2)
2 b2 ! 2 b2

2,

an_lé_é
b d 2

+

d = separation between fapes in centimeters.

The expressions for R, and R, were developed by
Maxwell for the geometrical mean distance of one tape
from itself, and two tapes in parallel, shown in Fig.

18 1,10.12

12 P, W. Grover, Inductance Calculations Working Formulas and
Tables, New York: Dover, 1962, chs. 2, 3, 5, 6, 24,
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a curved card prior to being mounted and encapsulated in epoxy Fig. 14. Four different wattage sizes- of MIL-R-26 type resistors
of 1000-ohm resistance wound in the Chaperon manner.

regin,
) ;
E 10
[T
E
g
E .
3 Smallest 1K unit
0 Largest 1K unit”
o5
o . - -
E Fig. 16. A 50-kilovolt pulse resis-
§ 101 tor consisting of five 10-kilohm,
5 5-watt, Chaperon-wound resis-
° tors.
3.0
2,51
2.07
1.57
RAC 0o ___/ Largest 1K unit
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c .
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Fig. 15, Frequency response of the largest and smallest 1000-0hm
resistors shown in Fig, 14,
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TAPES I—rb——{_L i—-—b*—‘l TAPES 4
RROXKRCXECR WM@&WT
DIELECTRIC

d DIELECTRIC d
{a) - (b)

ONE
LN
a—| |— N-OTHER

‘ COIL
{e)

Fig. 17. Possible tape configurations. (a) Closely wound tapes,
one coil inside the other. (b) Widely separated tapes, one coil
inside the other. (¢) Tapes of both coils in the same plane. b =
width of tape;- d = separation of tapes of the two coils.

s

Fig, 18. Parallel tapes of negligible thickness.

The capacitance of these tapes, considered as plates
of a capacitor, is*®

_ 8.85K0b

¢ d

107 farads (47)

where K = dielectric constant of material between the
tapes, and [, b, and d are the same for the inductance
expression. Substituting the expression for L and ¢ into
the low-frequency expression for E, we obtain

368 :
E = _—\/I_{ E;—].ni% ohms, {48)
1
For the high-frequency expression, B = +/5L/C, we
‘obtain
475 d, KR,
R = ’\/E ‘5 In 1?1 ohms. (49)

The plot of B versus d/b is shown in Fig. 19 for both
expressions of K.

The predictable frequency from f = 1/7 /1/2LC
becomes

f = 1.195-10“’. d
IVE bm%

1

cycles per second.,

In Fig. 17(c), the inductance is'®

"L o= 4] ]11%010'9 henries (50)

13 G, P, Harnwell, Principles of Blectricity and Electromagnetism,
2nd ed. New York: McGraw-Hill, 1949.

where
b = width of tape in centimeters

InE =1Inb— {3/2) as for (46)

2 2
lnRﬂ=£1?'—_2tL)-ln(n+1)b-n2]nnb+£ﬁ;—l)°

In{n — )b — &

in which n takes on values of one or larger, The letter n
denotes the number of tape widths between the ceniers
of the tapes shown in Fig. 20. For n greater than one,
In R, can be calculated from™ '

1
168#°

1 1

1 1
 360n° + B60n° T ] 61)

To solve for the capacitance expression, we again use
the relation given by (50) and obtain the expression for
the total capacitance by the procedure given in Appen-
dix II. The capacitance becomes

—12
¢ = —KZLR farads (52)
3.6 In 7
Substituting into the expressions for B = +/3L/C and

AV 5L/C, we obtain

B =208 Re s for Tow £ i
= VPR ohms for low frequencies (53)

and

2685 R
BR="—"=i=2 igh f ies.
VK In i ohms for high frequencies.  (54)

The frequency expression for this winding becomes

. 10
f= % cycles per second. (55)

Figure 21 is a plot of the high-frequency expression with
n = 2, K = 3.22 and different values of b.

An interesting. case is found when » = 1 with the
tapes not making contact. The expression for the induct-
ance becomes®

L = 5.5451-107* henries (56)
and the eapacitance is
C = 6.95K1-107"* farads (67)
whence
R = 8% ohms for low frequencies (58)
and
R = % ohms for high frequenecies. (59)
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1.0=
0.8+
6.6

0.2 -

b (width of ribbon in centitneters)

0.1+
0. 08

0. 06—

0,044

0,02 —

0.01 T

LR R T T T TTTT]
10 20 40 60 80 100 200 400 600 300 1000

R (ohms)

Fig. 21. Plot of formula for winding nonreactive chaperon resistors

when ribbons are in the same plane.

Thus, the resistance is only a function of the dielectric
constant of the material between the tapes. The frequency
expression becomes

1.14-10*°
= —_ = eycles per second. (60)
VK1

Equations (50)—(60) are directly applicable to thin
film resistors deposited upon flat substrates. Equations
(500, (52) give the induetance and capacitance of lead
wires on printed-circuit boards; when the wires form
return circuits.

Figure 17(b) is an arrangement whose capacitance
varies between that of (a) and (¢). Although the expres-
sions for the inductance and capacitance were not available
for this paper, resistors have been made with acceptable
frequency responses. By placing each turn of the coils
as closely together as possible without making eontact,
and by using tapes whose widths are suggested by {a),
low-inductance resistors can be made (see Table II).

Figure 22 is a photograph of a relatively low-reactance

resistor of 600 ohms, wound on a eylindrical core, using

ribbon conductors. It is Sample 2 -of Table II, showing
the constructional data of three units. Table II is a record
of the building of the resistors to have a minimum reac-
tance for & 11-million volt pulse.

Samples 1 and 2 show that the residual inductance
was reduced by placing the coils eloser together with the
thinner dielectric, Sample 3 was made with a higher
resistivity ribbon; hence, both the inductance and capaci-

tance were reduced. These results are indicated by the
reduction in the residual inductance,

The frequency response of each resistor is shown in
Tig, 28, Again, Sample 3 has the best frequency response.
It can be further improved by using a wider ribbon and
by decreasing the dielectric thickness,

The *“Hairpin”
The hairpin resistor approaches. Fig. 1, used in devel-

oping the relations between R, L, and C. With round
wire, the inductance is

or Loop Resistor Using Round Wire

L= 41(111% + i) 10" henries 6L)

from (37), and from (38),

-12
¢ = KL10 - — farads. (62)
3.6 ln‘;

Therefore, the expressions for the resistance become

208
.\/ ( ) ]11 % ohms for low frequencies

(63)
and
268.5 2
R = VE (]n %) + i In % ohms for high frequencies.
(64)

These expressions are the same as those for the Chaperon
winding, (39) and (40). Figure 7 shows plots of R as a
function of d/r.

When the ratio of d/r beecomes less than 10, the ex-
pressions for B must be changed, as was done with the
Chaperon winding; hence,

S Wwex prper:

ohms for low frequencies (65)

and

_ 268.5 ( . d)z 1 - d
= VE V\0osh™ 57} +Zeesh™ 5
ohms for high frequencies. -~ (66)

Plots of these expressions were given in Fig. (8).
For the expression f = 1/ /1/2LC, we substitute
(61) and (62) for L and €, and obtain
d
675-100 | I3

T WK | dEl
r 4

cycles per second.

The length of the eonductors is R/2p. For proximity
effects, cosh™ d/2r is substituted for In d/r.
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TABLE 1T

ConsTRUCTIONAL Dara oN THrREE CmaPERON ResrstoRs Usine Wine RIBRON

) . Residual
DC Width of Thickness o Thickness of Length inductance
Sample resistance ribbon of ribbon Resistivity dielectric of coils at 200 ke
No. {ohms) (inch) (inch) (ohms/cm ft) (inch) (inches) (micrchenries)
1 610 0.0156 ©.003 11,19 0.011 10 - | 2.37
2 606 0.0156 0.003 11.19 0.005 19 1.25
3 601 0.0156 0.002 18 0.005 b 0.54
R e
SRR
SRR I Ml
Fig. 22. A low-reactance, 600-chm, 1 14 million-volt pulse resistor
using wire ribbon conductors wound in the Chaperon manner
on a eylindrical core. -
=
L
=
=
3 10, 600 ohm-
[4 10" coils-
b=} 11 mil dielectric
£ 54
"
- e
- 0 ~"600 chm-
L] 10" coil-
£ 51 5 mil
"E dielectric
g 164 600 chm, 5' coils, -
5 mil dielectric
[&]
15
3.0
2.5
600 ohm-
10" eoils-
2,04 5 mil
dielectric
L.54 600 ohrn-
R, 17" coils-
% 1.0 11 mil
DC [+ dielectric
.54
600 ohm, 5' coils,
[ 5 mil dielectric
.05 . .2 .5 1 2 5 10 25 50 100 200 250
Frequency (megacycles)
Fig. 23. Frequency responses of three resistors wound in the
Chaperon manner with wire ribbon and using different dielectric
thickness, *
m L ioirutt i;;*w o
SOLDERED OR et s
SPOT-WELDED |
TERMINALS [ hahe
e

DIELECTRIC

Fig. 24, The hairpin nonreactive resistor using wire ribbon.
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Fig. 25, An essentially zero reactance resistor of 0.9 ohm made
from the hairpin winding using ribbon wire.
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The“ Hairpin’ or Loop Winding, Using Ribbon Conductors
For low-resistance values, the use of ribbon or tape

conductors for the loop resistor offers many advantages.
The expression for the inductance, using Fig. 24, is

L =4 m%-m—” henries 68)
1

and

—~i4
C= M—%—&—— farads (69)

where the terms are the same as for the Chaperon winding,

(48) and (47). Again, the expressions for the resistance
become

368
R S

and

ohms for low frequencies, (70)

R 475 d R2
= V&
Plots of this expression were shown in Fig. (19).

The frequency expression in terms of the conductors
fromf = 1/x \/ 1/2LC becomes

1.195.10 d les per second.  (72)
o 2y ——= cycles per second.
vEl [, m% |
1

The length of the conductors is B/2p.

Figure 25 shows a loop resistor made from Tophet C
wire ribbon, 1.75 inches wide by 0.001 inch thick, of
0.306 ohm per foot, and a separation of 0.005 inch. These
dimensions gave a d/b ratio of 0.0028, corresponding
to a 1.4-ohm unit {rom the high-frequency plot in Fig. 19,
The de resistance was slightly less, 0.9 ohm, but still there
was essentially zero reactance at 200 kilocyecles, After
encapsulation, the reactance became capacitive, 0.01
picofarad, approximately. The effect of the lead wires
and the position of the .resistor terminals to the high-
voltage ferminal of the bridge masked the true reading
of reactance. A l4-kilovolt pulse produced an arc break-
down at the beginning of the ribbons. Removal of any
sharp edges and an increase in the resistance should
improve the voltage breakdown.

ohms for high frequencies. (71)

Coaxial Pulse Resistor Using Round Wire

Pulse resistors can also be made in the coaxial form
using the return circuit with one end shorted. The open
circuited end then forms the terminals. _

For the return circuit shown in Fig. 26, the expression
for the inductance is*’

L = 21 In 2.10™° henries (73)

1
and the capacitance is, from the method in Appendix II,
0.556K1
InTe

Ty

O = -107*2 farads (74)

where

K = dielectric constant of material between the inner
and outer conductors
r; = radius of inner conductor in centimeters
1, = radius of outer eonductor in centimeters
! = length in centimeters.

Then .the expressions for the resistance become, from

= V/3L/C and V/5L/C,

i08 . r .
B = —= In -2 ohms for low frequencies 75
VvE " 1 ™

1

and
R = 134 In 2 ohms for high frequeneies.  (76)
\/I_{ 1
The predictable frequency from f /7 1/2LC
becomes
6.76-10°

= cycles per second.
f IVE yeles p

“Plots of (75) and (76) are given in Fig. 27. As with the
other geometries, a small change in the ratio of the inner
and outer diameters results in a large change in the
nonreactive resistor.

The above formulas are based upon the assumption
that both the inner and outer conductors are made of the
same resistive material. Thus, the distributed resistance,
inductance, and capacitance are consistent throughout.
The conductors should be tubes of the resistive material
to give the best results from the formulas.

At this time, the author has also used the coaxial
form to reduce the residual inductance of a cylindrieal
Chaperon-wound resistor with it as the center conductor.
Under these conditions, the capacitance of the outer
conductor (usually copper) can be eonsidered additive
to that of the Chaperon winding, since it is distributed
uniformly along the length of the resistor. However, the
current distribution will not remain uniform with in-
creasing frequency, since the resistivities of the inner and
outer conductors differ,

To calculate the radius of the shield, we proceed as
follows:

The residual inductance, Lz, of the resistor by itself,
is from. (34),

5
where L and C are the values given for the Chaperon
winding in the section, M athematical Development Relating
R, L, and C of the Resistor. To make Ly equal to zero,
we have, by adding the capacitance of the shield,

0 —_ L — (C + Cuhieid)Rz_
5

(78)
Solving these equations for the capacitance of the shield,
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Fig. 26. Coaxial pulse resistor eonnected as & return eireuit.
1000

800
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Fig. 27. Plot of ratio of outer and inmer radii with resistance
value for making nonreactive resistors from a coaxial return
eireuit.

we have

Cobiora = §L2L—R;;—IJ_R_)‘ farads. (79)

Setting (74) equal to this expression, we obtain, for the
radius of the shield,

[0.111K1-10-”R=
oL — Lg

where exp is 2.718 - - - | the base of the natural logarithms,
and r, is the radius of the original resistor.

Equation (80) shows that r; is large when 2L — L is
small, i.e., less capacitance is required when the residual
inductance of the original resistor is small, This result
is expected.

The use of the coaxial resistor to compensate for a
previously inductive resistor should be restricted to
residual inductances less than 0.5 mierchenry. The
nonuniform current distribution at the higher frequencies
in a pulse will distort the current waveform. However,
in the case where a short length of high-resistive wire
is used for the center conductor, the effect becomes very
small. It is most applicable for low-resistance values so
that the length of the center conduector is only 1 or 2
inches long.

-

T, = 1, €xp J centimeters,  (80)
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ConsTRUCTION AND MEASURING TECENIQUES

The major precautions one should follow in building
the pulse resistors are:

1) For every resistor geomefry, one must use a lathe
or winding machine to maintain the separation and
size of the conductors throughout the lengths of the
conductors. This assures that the resistor’s geometry
follows the design formula and preserves the relation
of the resistance, inductance, and capacitance per
unit length. The use of a matting, such as Dacron
cloth or fiber, will insure the separation of the
conduetors wound on cards or cylindrical forms,

2) The winding form, such as nylon or epoxy glass
board, should have a high wvolume and surface
breakdown. It also must be clean and permit good
bonding of the encapsulating material. Cracks or
surface scratches should be avoided.

3) The encapsulating material should bond the form
and the wires throughout. It must completely
penetrate the matiing between the conductors.
Encapsulation methods must insure that no bubbles
or uncured portions remain in the finished unit,

4) The resistor terminals must be free of all fluxes,
whether soldered or silver brazed, which may have
been used to secure the ends of the conduetors.
The terminals must be secured to the form so that
they will support the resistor during encapsulation.
Corona shields must allow the encapsulation material
to penetrate and bond to their total surfaces. These
should be polished to the degree produced by a
rouge polishing agent.

Figure 28 is a photograph of an encapsulated resistor
having gas bubbles produced during curing of the epoxy.
Such defects readily produce corona discharges and: a
permanent voltage breakdown.

Fig. 28. A Chaperon-wound resistor of 15 kilohms, 150-kilovolt
pulse: voltage, showing gas bubbles from a contaminant on the
windings. o

Test Equipment

The pulse resistors were measured with two different
pieces of equipment.

1) An RLC bridge made by Bell Laboratories.
2) The RX meter, Model 250A, made by DBoonton
Electronies Corporation.

The RLC bridge covers a frequency range from 0.2 fo
200 kiloeycles. It measures resistanee from 0 to 11110
ohms, inductance from 0 to 11110 microkenries, capaci-
tance from 0 to 11110 picofarads, and conductance




—

from G to 11110 micromhos. The zero ranges are realized,
since the readings for zero setting the bridge are always
subtracted from those read for a resistor. At balance,
the sensitivity of the bridge approaches 10 microvolts
(0.001 mierohenry) and pérmits a precise adjustment
to obtain the five digit accuracy. Corrections are provided
for the ranges of the instrument. The bridge readily
measures different shorting bars used for inductance
measurements,

The RX meter covers the frequency range of 0.5 to
250 megacycles, with a resistance range of 15 to 1000 00
ohms. The capacitanee range is 0 to 20 picofarads, and
the inductance ranges from 0.01 mierohenry to 100
millihenries, depending upon the frequency setting.

Measuring Technigues

Although the formulas for pulse resistors will assure
very small time constants, measuring their values presents
many difficulties. Both the resistanee value and the
physical size adversely affect the measurements.

The inductance of the lead wires adds to the resistor’s

-residual inductance for values below 1000 ohms. Above

1000 ohms, capacitance problems predominste. Large
resistors have an appreciable ground capacitance, while
with small resistors an exact location of the terminals is
required from which to measure their reactance. The
combination of resistance value and physical size com-
pounds the measuring procedures.

For both instruments, precautions must be observed
for resistors having time constants of 10~° seconds or less:

1) Although the effect of the resistor’s capacitanee to
a ground plane is subtracted from the readings, its distri-
buted portion to the windings changes the frequency
response. This capacitance is minimized by removing a
cylindrical resistor at least one diameter from the ground
plane. A flat resistor is rotated so that a longitudinal
edge is presented to the ground plane. The larger the
resistor body, the greater is this capacitance effect.

2) The length, size, and shape of the lead wires also
affect the residual reactance by becoming a part of the
resistor’s parameters. They must be as short as possible
and have a minimum of induetance.

3) A mearly zero reactance unit produces essentially
no coupling to external objects. However, the physical
position of the resistor must remain eonstant throughout
the frequency range of the instrument. Any change in
position will affect the capacitance to the ground plane.
Further, as mentioned, the selected position of the
terminals must be repeated each time a resistor is meas-
ured. Otherwise, the errer in measurement will far
exceed the resistor’s reactance,

Resistors having time constants greater than 107°

‘seconds present coupling to external objects. The effect
becomes extreme with large resistors and at frequencies

above one megacyele. The large resistors require a mini-
mum coupling position to a ground plane although some
cases cannot be improved. -

Although the instruments have sufficient accuracy,
the operator must adjust the measuring setup to minimize
the effects external to the resistor so that the instrument
accuracy can be ohtained.

FreEquENncY Efrscrs

Fourier Analysis of Pulse Frequencies

For extremely high voltage pulses, the pulse is con-
sidered to be rectangular and of only a single polarity.
We shall discuss such a pulse (see Fig. 29).

Pulse voltage = e

Pulse
Logen .
width

Fig. 29. Rectangular pulse waveform.

Kerchner and Corcoran™ give the Fourier expression
for this pulse as .

¢ = A, sinwt 4 %'l'sin.'a‘wt-[- -45—‘sin5cot+ e (81)
whére
k3
and

© = 2zx-frequency.

The frequency of the fundamental is related to the pulse
width » by

f = 3w cycles per second. (82)

If w is in microseconds, then the frequency becomes
11

f= 5:10 cycles per second. (83)

For the resistors described in this paper, the pulse
width varies nominally from 0.1 to 20 microseconds..
‘Thus, the fundamental frequency varies from 5 mega-
cycles down to 25 kilocycles.

To determine the upper frequency to which the resistor
must be nonreactive, we can make an estimate of the
frequencies necessary to reproduce the rectangular pulse
shape, including the rise time of the leading edge. The
frequeney of the sine wave to approximate a rise time ¢
is the reciprocal of 4¢

This estimate suggests harmonics varying from the
tenth through the twenty-fifth. When the rise time of
the leading edge is 107° seconds, then the maximum
frequency is 250 megacycles. At this frequency, the skin

¥R, M. Kerchner and G. F. Corcoran, Aliernating Current
Circuits, 8rd ed. New York: Wiley, 1955 chs. 6, 12, p. 171.
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effect on the. conductors, including the inductance and
the capacitance, must be compensated. These topics
compose the nexi two sections.

Skin Effect on Resistance and Inductance

Having frequencies in the region of 200 megacycles,
we must consider the skin effect, which results from
nonuniformity of the current distribution. As the fre-
quency inereases from de, the current through solid
conductors gradually concentrates toward the outer
surface of the conductor. This action is brought about by
‘the increased inductance of inner portions of the conductor.
The increase can be seen from the high-frequency expres-
sion for the inductance of a rod,

L=20 (2—3 - 1) 10 henries,

(84)
where [ is the length, and r is the radius of the rod. As r
inereases from the center, the inductance decreases; hence,
as the frequency increases, the impedance increases at the
center more than it does at the outer parts of the wire.
Thus, the eurrent recedes to the outer radius of the wire.
This action results in an increase in the resistance, since
the current’s cross section is reduced.

The ratio of the ac resistance to the dc. resistance is
given by the following expression:'*

_ 7 2'f_,ﬂ 2f
RBoc /2 24/2

where r is the radius, D is the diameter, and p is the
resistivity in absolute units of the conduetor. The term f
is the frequency in cycles per second.

We can caleulate the frequency for any conductor so
that the ac resistance will not be greater than one percent
of the de resistance value. Substituting in (96), we obtain

Bag

Byo . m 85)

xD 2]‘

== = 101 = 86
Epg 2\/— (86)

Solving for {, we have
f= 0.4D028-p cycles per second. (87N

For a frequency of 100 megaeycles and resistivity of
1.32.10° abohms per centimeter for Evanohm wire
{for copper, 1721 abohms per centimeter, the dla.meter of
the largest wire that can be used becomes

D = ’0.4(;81_

Upon substituting for p and f, we find

[
D=+ ’-640—8‘1%%?@-& — 0.0232 centimeters. (89)

In actual practice, the peak currents may require a
larger wire diameter to prevent overheating the wire.
The depth of penetration as a funetion of frequency

20

(88)

and the resistivity is'®

— b \J? cent
=5 y centimeters

For f = 100 megacycles and p = 1.32-10°, we obtain

1 ’1.32-10‘i .
Yy=%2m\N" 10° = 0.0056 centimeters.  (91)

Table IIT presents the effect of frequency on Evanohm,
Tophet A, and Manganin wire. For frequencies of 100,
200, and 400 megacycles, the largest wire diameter and
the depth of penetration were caleculated for a one percent
increase in the de resistance.

The effect of frequency on the inductance of the con-
ductors can be shown by the change in the inductance
formula for a solid conductor. At low frequencies, the
inductanee is

(90)

L= 2;[1112—1 ~1 %]-10'“ henries  (92)
where [ is the length and r is radius of the eonductor in
centimeters. T is a function given by Grover.'* For
resistance wire, i, the magnetic permeability, is essentially
unity. The formula then becomes
L= 21[111 2_ 4z ] 10 henries.  (93)
As the frequency is increased, the current, upon con-
centrating towards the surface, causes a loss of the flux
produced by the portion that flowed in the center of the
conductor. As Grover shows, T' becomes zero at very high
frequencies, so the formula becomes

I = 21[]11 2_ 1:| 107° henries.

(94)
This slight reduction in the induetance ean be ignored
by using all high-frequeney formulas in making pulse
resistors as was done in the section, “ Design Formuias For
Pulse Resistors of Different Geometries.”

Frequency Effect on the Dieleclric Malerial

As Aftwood shows in his text,'® the dielectric constant
decreases with increasing frequency, since the polarization
of the bound charges eannot follow the rapid reversal of
the electric field at high frequencies. The change in the
dielectric constant and the dissipation faetor of SRIR
with frequeney are shown in Table IV. The dissipation
factor is defined as the ratio of the equivalent series
resistance fo the impedance of a capacitor having the
dielectrie.

To show the effect on frequency response of the pulse
resistors, we proceed as follows.

Race and Larrick'® show that (jwc + g) of the general
expression V/(p 4+ jwA)(jwc + g) in (6) of the section,

& H, H. Race and C. V. Larrick, “High-frequency eoaxial line
calculations,” Elec. Engrg., vol. 61, pp. 526-530, July 1942.

3. 8. Attwood, Eleclric and Magnetic F@,elds 2nd, 3rd eds.
New York: Wiley, 1941 1949,




Frequency ErrEcts oN DiFFereNT KINDS oF REsisTaNCE WIRE

TABLE III

o

“Principles of Trapsmission Lines Applied to Pulse
Resistors,”’ can be expressed

\ B i Highest frequency
for 19 change in Depth of Largest wire
] resistance penetration diameter
Name and Resistivities

composition abohms/em megacycles em inch om inch FAWG

Evanohm 1.32-105 100 0.0056 0.002 0.023 ¢.009 31
74.59, Ni 200 0.0039 0.0015 0.0162 0,006 34
209% Cr _ : i
2.75%, Al - 400 | 0.0028 €.001 0.011 0.0045 37
2.75% Cu

“Tophet A 1.08-105 - 100 0.0052 0.002 0.021 0.008 32
80% Ni 200 . 0.0037 0.0014 0.015 0.0057 35
209%, Cr 400 0.0026 0.001 0.010 0.004 38

Manganin 4.81-104 - 100 - 0.0035 ¢.0014 0.014 0.0055 35
879, Cu 200 0.0024 .0009 0.010 0.0039 38
13% Mn - 400 0.0017 0.0007 0.007 0.0027 41

TABLE JV
Cranees 1IN THE DieLectrIic CONSTANT AND DiIssipaTioN FACTOR OF
SRIR. Eroxy wita FrequENcY
Frequency 102 103 108 108 108 107 {eps)
Dielectric constant 3.64 3.55 3.54 3.42 3.42 3.22
Dissipation factor 0.0167 0.0161 0.0160 0.0191 0.0130 0.0206
L ) TABLE V

Dierecrric Consrant anp Loss Facror or KL F 500
AT DIFFERENT FREQUENCIES

K = K’ + ;. 95
wo g = oCy(K" + jf) ©5) Frequency 108 107 108 (cps)
where Cy is the capacitance per unit length with air as — - :
the dielectric, K is the dielectric constant, and K’ is the Dielectric constant 2.2 2.8 2.37 _
loss factor, g/wCy. Expanding the right side of (95), we Loss factor ¢.6082 0.0078 0.0048
have
. _ ;- )
e+ g \wOVK + wCrK (96) Removing common factors, we have
Equating the real and imaginary parts, we obtain '
. ., K'Y wK-107"
joe = jwCyK or ¢ = CyK {97 Jwe g = 3’+—K“ a4 {101)
36In—
and T
¢ = oCyK', (98) To make the assumption that ¢ = 0 for the develop-

Since the capacitance, Cy, for the geometry of each
resistor is known, we can express g in terms of the fre-
quency, the capacity, and the loss factor.

Substituting for Cv, the capacitance per unit length
for the Chaperon winding of (38), we have

_ oK’ 107" _ 1.745¢-K’ -1077?

mhos per centimeter.

ment of the general expression for the impedance of the
pulse resistor, (25), the ratio K'/K should be less than 0.1.
However, since the losses increase with frequency, then
the capacitance increases and eventually will cause the
residual reactance of a resistor to become capacitive,
To prevent this effect we must use dielectrics whose
losses are small at extremely high frequencies.

In d In d As the demands on the pulse resistors become more
3_'6 r r (99) restrictive on the size, voltage, and frequency response,
Theref b t'f ting in (96 ha new dielectrics will need to be studied. Such a material is
erefore, substituting in (96), we have Kel F 500 used in high-frequency, high-voltage RF
. . K072 oK7.107" cables. Its dielectric constant and loss factor are given

e+ g = jo Gt W0 e ¢
5.6 In ; 56 3 The frequency stability of this material is readily seen.
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CoNcLusioNs

This paper has presented design formulas for high-
voltage pulse resistors using both round wire and ribbon
conductors, The return circuit, treated as a short-circuited
transmission line, formed the basis for relating the distrib-
uted resistance, induetance, and capacitance. The pulse
registor differs from the normal lossless transmission line
by dissipating all of the pulse energy in an efficient way

over the length of the conductors. When the resistor has

no residual reactance, no coupling is presented to external
objects.

The residual reactance was expressed as follows:

Residual Reactance _
= L — (CR?/3) for low frequencies

and

Residual Reactance
= L — (CR?/5) for higher frequencies.

The residual reactance becomes zero when R = +/3L/C
or V/5L/C ohms. The higher value expression oceurs at
the frequency f = 1/ +/1/2LC cycles per second.

Upon substituting expressions for the inductance L
and the capacitance ¢ for different geometries, an
expression for the resistance is obtained which is not a
funetion of the length of the conductors. The expressions
for R, L, and C, control the values per unit length of the
return circuit and thereby ignore the winding form. The
spacing and size of the conductors must be maintained
throughout the length of the conductors. The method
was applied to the Chaperon double winding, the loop or
hairpin unit and the coaxial form,

The theoretical or ideal resistor cannot always be
realized. Wire sizes must be increased to prevent over-
heating, and the resistor’s physical dimensions become
restricted to meet the equipment requirements,

Resistance values can vary from one ohm to a few
hundred thousand ohms, with the low values tending to
be inductive, and the high values capacitive. However,
these effects are reduced by selecting the correct resistor
geometry and the form of the eonductors. Tlme constants
vary from 107° to 107" seconds.

The effect of frequency on the resistance, inductance,
and capacitance can be controlled by using high-resistivity
wire, highfrequency formulas, and stable dielectrie
materials.

Pulse voltages up to 1.2 million volts have been applied

suecessfully to units with corona shields on the terminals
and with the resistors encapsulated in epoxy resin.

The resistors are directly applicable as dummy antennas
for continuous waves.

APPENDIX I

ExransioN oF THE RETURN Crrcurr IMPEDANCE
From (24), we have

22

= @ + QL) = 3 ® + WLFGC + Q)
+ 22 (B + L) GeC + O
17 L radgs 3
— 315 B + D)'GaC + G - (102)

Setting G =
obtain

0 and expanding the first three terms, we

Z =R+ joL — 3[R + RRL — L))

+ 123 [(R® + BeRL — 3'I’R — WL —CY. (103)

Removing the parentheses inside the brackets, we have

Z =R+ jol — -;: [R%C ~ 2%RLC — #L7C]

+T25 [—Rw*C*~ 30°R°LC°+ 3 RIPC° +4°L*C?.  (104)

Removing the brackets, we have

LW’ LC
3

Z = R+3wL—3E—@g+ Sw

- %R*wzc* - %mstLC“’ +3eRIC + 5 m“L"C”

(105)

Collecting the real and imaginary terms, we obtain

Z=R+2 2 JRLC — 2 2 g 4 %w‘RL’C”

372
_H.( w0 SLC 2 (106)

coL—-—é-—-!-—-——- 3R"’L(')’?-i— 5L"C’z)

Dropping the last term of the real part and the last two
terms of the imaginary expression, which means that we
are only using the first six terms of the expansion, we

obtain
%]
15

2
+ yw[L ~EC,

Z = R[l - 2a:20(L

ZLZC:I. 107

Setting the term in parentheses of the real part, and that

in the brackets of the imaginary portion, to zero, we have

L R e L.
37 15 =0, hegce, R = 50

(108)

s

T




and

R c 2L’C’

L ——==4+ —F— =0, hence,

- \/% +a = LG+ IO (09)

From the two expressions, we see that

5=3+4+'LC or, o'LC = 2,

hence,

1

1=2\zg (110)

Utilizing all of the terms in (106) above and factoring
ouf common terms, we have

7 = R[l + gmzLC - R2 20 4 2 *chz]

2 22
+gza[L—%9+‘ig—C—3 ZRZLC’"+— “L3C”]. (111)

‘Rewriting further, we have

AL R m"LZC):I
Z = R[1+2w0( TS5
+coLC(3+15wLC .

(112)

+ jw[L - R"(g- + ?—)szCz)

ArpEnpIx IT

Revation oF INDUCTANCE AND CAPACITANCE
oF A TranNgMIssION LINE

From transmission line theory when L.G = RC, the
inductance and capacitance per unit length are related
as follows:®

1 velocity of light in centimeters per second
Ve VK

where A and ¢ are values per unit length.
Dividing the inductance of (50) by I, substituting the
expression for A, and then solving (113) for ¢, we have
¢ = K : (119)

(velocity)®4 In 32 R, -107°

R,
Using 310" for the velocity of light and multiplying by I
we have, for the fotal capacitance,

Kl-107

(113)

C =

farads. (115)
3.6mI=" E,
. R
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